IMPORTANT NOTE:
Read and understand these instructions before installing, operating, or maintaining this equipment

Hinged Guard

Sliding Guard

The product is designed to be a component of a customised safety orientated control system. It is the responsibility of the user to ensure the correct overall functionality of its systems and machines. IDEM, its subsidiaries and affiliates, are not in a position to guarantee all of the characteristics of a given system or product not designed by IDEM.

Application and Operation:

Safety Interlock Switches with Guard Locking are designed to fit to the leading edge of sliding or hinged guard doors to provide positively operated switching contacts and provide a tamper resistant key mechanism. They are designed to provide robust position interlock detection and holding closed of moving guards. The switch is rigidly mounted to the frame of the guard or machine. The actuator is fitted to the moving part (frame) of the guard and is aligned to the switch entry aperture. The actuator profile is designed to match a cam mechanism within the switch head and provides a positively operated not easily defeatable interlock switch. When the guard is closed and the actuator is inserted into the switch the safety contacts close, the actuator is locked and the machine start circuit can be enabled. When the solenoid is energised the safety contacts are positively opened, the machine stop circuit is broken and the guard door can be opened.

Installation:

1. Installation of all interlock switches must be in accordance with a risk assessment for the individual application. Installation must only be carried out by competent personnel and in accordance with these instructions.
2. M5 mounting bolts must be used to fix the switch and actuator, the tightening torque to ensure reliable fixing is 4.0 Nm . To prevent loosening of the switch after installation, always fix the M5 mounting bolts with a thread-locking compound or secure using self locking nuts.
Tightening torque for the lid screws, conduit entry plugs and cable glands must be 1.5 Nm to ensure IP seal. Only use the correct size gland for the conduit entry and cable outside diameter.
Tightening torque for the connection terminal screws is 0.7 Nm , max conductor size is 1.0 sq.mm.
The switch head position can be selected by removing the actuator, loosening the 4 head bolts and then rotating the head to the position required. Re-tighten the head bolts and then check actuator insertion and withdrawal. Tightening torque for the head bolts is 1.5 Nm .
3. Always fit a mechanical stop to the guard to prevent damage to the front of the switch.

Set the actuator gap to 3 mm when the guard is closed and against the stop. (See Fig. A.).
Use alignment guides to ensure that the actuator enters the switch without interfering with the sides of the switch aperture.

Fig. A If fitted, ensure access to at least one of the auxiliary release points.

The switch can be positioned / shielded to prevent unintended actuation of the auxiliary release.
The auxiliary release function is achieved by use of a tool and is to be used in exceptional circumstances. The auxiliary release can be protected by use of a tamper coating to protect against unintended operation If operated this tamper protection must be restored.
Always fit the aperture plug to the unused entry aperture to prevent debris entering the switch mechanism
4. After installation check operation of all control circuits and the locking function. For applications with a run down time after removing power, ensure that the correct timing allowance has elapsed before energising the solenoid.
LED 1 RED will illuminate when power is applied to A1 and A2 (solenoid feed).
LED 2 GREEN (if used) will be illuminated when the actuator is locked.
 8 actuator entry positions rotatable head

5. IMPORTANT!

At installation choose the status of
Terminals 33 and 34 by setting the
slide switch inside the switch housing.

Fig. B

Safety Interlock Switch with Guard Locking KLP

Safety Interlock Switch with Guard Locking

OV

Quick Connect (QC) M23 12 way Male Plug (Pin view from switch)	Switch Circuit
$1 \quad 3$	A1 A2
$4 \quad 6$	$11 / 12$
$7 \quad 8$	$21 / 22$
$2 \quad 5$	$43 / 44$
9	33
10	34
Earth	12

$\phi 5.50$

Fixing: M5 CSK

Conforming to Standard:
Safety Classification and Reliability Data: Mechanical Reliability B10d ISO 13849-1 EN 62061
Safety Data - Annual Usage
Solenoid Voltage (by part number) LED 2 Supply Voltage Safety Contacts 11/12 21/22

Overload protection fuse (fuse externally) Auxiliary Contact $33 / 34$ (selectable with LED2) Auxiliary Contact 43/44 Rated Insulation Voltage Rated Impulse Withstand Volt Travel for Positive Opening Approach Speed Man. Actuation Frequency Actuator entry minimum radius Case Material Head Material Actuator Material Enclosure Protection Operating Temperature Holding Force Vibration

Conduit Entry Fixing

ISO14119, IEC60947-5-1, UL508, ISO13849-1
2.5×10^{6} operations at 100 mA load up to PLe / Cat. 4 depending upon system architecture up to SIL3 depending upon system architecture 8 cycles per hour / 24 hours per day / 365 days MTTFd 356 years
24 V ac/dc or 110 V . ac or 230 V . ac $+/-10 \%$ (12W.)
24 V dc +/-10\%
Utilization Category AC15 A300 3A.
Thermal Current (Ith) 5A
10A. (FF).
24V.ac/dc 0.5A. Maximum.
230 V .ac/dc 0.5 A . Maximum.
600VAC
2500VAC
10 mm
$200 \mathrm{~mm} / \mathrm{m}$. to $1000 \mathrm{~mm} / \mathrm{s}$.
2 cycle/sec
175 mm Standard 100 mm Flexible
Glass Filled Polyester
Stainless Steel 316
Stainless steel 316
IP67
$-25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
F1Max: 2000N. Fzh: 1538N. IEC $68-2-6,10-55 \mathrm{~Hz}+1 \mathrm{~Hz}$, Excursion: $0.35 \mathrm{~mm}, 1$ octave $/ \mathrm{min}$ Various (See Sales Part Numbers) $4 \times \mathrm{M} 5$
sure.
Information with regard to UL
Maximum temperature $40^{\circ} \mathrm{C}$.
Use 16-28AWG stranded copper conductors (rated $90^{\circ} \mathrm{C}$).
Terminal Torque 6 lb ins. (0.7 Nm).
Intended for same polarity use. A300 Pilot Duty. 240V. 3A.
PF 0.38 or greater, tested for 6,000 cycles endurance
Use one polymeric conduit connection.
Not suitable for connection to rigid metal conduit.

Application Example: Door Interlock with Guard locking - Dual Channel (non-monitored).
The guard is locked closed until the solenoid is energized. The solenoid can only be energized when the auxiliary contacts (A) of contactors K1 and K2 are closed. When the lock release button is pushed the locking mechanism is released and the switch contacts 11-12 and 21-22 are opened. These contacts are in series with contactor coils of K 1 and K 2 and will prevent re-start whilst the guard is open. If after pressing the Stop button either contactor K1 or K2 stays closed the machine will stop but the solenoid cannot be energized or the guard opened.
LED 1 provides visual indication of solenoid power applied.
LED 2 provides visual indication of guard locked and machine able to start.
System is shown with machine stopped, guard closed and locked, and the solenoid able to be energized (Lock released).

